

Reg. No.:....

Name :

Third Semester B.Tech. Degree Examination, December 2012 (2008 Scheme)

08.304 : ELECTRONIC CIRCUITS (RF)

Time: 3 Hours

Max. Marks: 100

PART - A

Answer all questions.

- 1. Explain the working principle of SMPS.
- Analyse full wave rectifier (with centre tapped transformer) and find out ripple factor and TuF.
- 3. Explain the working of an inverter.
- 4. Determine Vo for the network shown:

- 5. Explain the working of Wien bridge oscillator.
- 6. Explain the operation of astable multivibration using 555 timer IC.
- 7. Explain the working of Colpitts oscillator.
- 8. Find V_{CEQ} for the collector to base bias circuit with V_{Ce} = 12 V, R_B = 680 k Ω , R_C = 4.7 k Ω and β = 100.
- 9. Draw the circuit of a differential amplifier using OPAMP.
- 10. Calculate the output of an inverting amplifier with $R_i = 100 \text{ K}$, $R_f = 220 \text{ K}$ and $V_{in} = 1 \text{ V}$. (4×10=40 Marks)

20

20

PART-B

Answer any one question from each Module.

Module - I

- 11. a) Design and analyze a full wave bridge rectifier with RC filter.
 - A full wave bridge rectifier with a 120 V_{rms} sinusoidal input has a load resistor of 1kΩ.
 - i) If silicon diodes are used, what is the dc voltage available at the load?
 - ii) Determine the required PIV rating of each diode.
 - iii) Find the maximum current through each diode during conduction.

OF

- 12. a) What is the response of a passive RC low pass filter to a sinusoidal waveform?
 - b) Explain different types of clampers.

Module - II

- a) Explain the voltage divider bias circuit for common emitter configuration and obtain expressions for I_B and V_{CE}.
 - b) Determine the dc level of I_B and V_C for the network shown in Figure 1.

 $\frac{91 \text{kn}}{10 \text{kn}} = \frac{10 \text{kn}}{3.3 \text{kn}}$ $\frac{10 \text{kn}}{10 \text{kn}} = \frac{10 \text{kn}}{10 \text{kn}}$ $\frac{10 \text{kn}}{10 \text{kn}} = \frac{10 \text{kn}}{10 \text{kn}}$ $\frac{10 \text{kn}}{10 \text{kn}} = \frac{10 \text{kn}}{10 \text{kn}} = \frac{10 \text{kn}}{10 \text{kn}}$

Figure - 1

- 14. a) Derive the expression for voltage gain in emitter follower configuration.
 - b) Explain the working of RC phase shift oscillator.

20

Module - III

- 15. a) Describe the working principle of an ideal OPAMP. What are the applications of OPAMPS?
 - b) Realize a II order active low pass filter using OPAMP.

20

OR

16. Explain summing, differential, inverting and noninverting amplifier configuration using OPAMP.

20

